
29-1

In Chapter 27 we tried to predict the percent body fat of male subjects from
their waist size, and we did pretty well. The R2 of 67.8% says that we ac-
counted for almost 68% of the variability in %body fat by knowing only the

waist size. We completed the analysis by performing hypothesis tests on the coef-
ficients and looking at the residuals.

But that remaining 32% of the variance has been bugging us. Couldn’t we do a
better job of accounting for %body fat if we weren’t limited to a single predictor?
In the full data set there were 15 other measurements on the 250 men. We might
be able to use other predictor variables to help us account for that leftover varia-
tion that wasn’t accounted for by waist size.

What about height? Does height help to predict %body fat? Men with the same
waist size can vary from short and corpulent to tall and emaciated. Knowing a
man has a 50-inch waist tells us that he’s likely to carry a lot of body fat. If we
found out that he was 7 feet tall, that might change our impression of his body
type. Knowing his height as well as his waist size might help us to make a more ac-
curate prediction.

Just Do It

Does a regression with two predictors even make sense? It does—and that’s fortu-
nate because the world is too complex a place for simple linear regression alone to
model it. A regression with two or more predictor variables is called a multiple
regression. (When we need to note the difference, a regression on a single predic-
tor is called a simple regression.) We’d never try to find a regression by hand, and
even calculators aren’t really up to the task. This is a job for a statistics program
on a computer. If you know how to find the regression of %body fat on waist size
with a statistics package, you can usually just add height to the list of predictors
without having to think hard about how to do it. 
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For simple regression we found the Least Squares solution, the one whose coef-
ficients made the sum of the squared residuals as small as possible. For multiple
regression, we’ll do the same thing but this time with more coefficients. Remark-
ably enough, we can still solve this problem. Even better, a statistics package can
find the coefficients of the least squares model easily.

Here’s a typical example of a multiple regression table:

Dependent variable is: Pct BF
R-squared 5 71.3% R-squared (adjusted) 5 71.1%
s 5 4.460 with 250 2 3 5 247 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value

Intercept 23.10088 7.686 20.403 0.6870
Waist 1.77309 0.0716 24.8 #0.0001
Height 20.60154 0.1099 25.47 #0.0001

You should recognize most of the numbers in this table. Most of them mean what
you expect them to.

gives the fraction of the variability of %body fat accounted for by the multiple
regression model. (With waist alone predicting %body fat, the was 67.8%.) The
multiple regression model accounts for 71.3% of the variability in %body fat. We
shouldn’t be surprised that has gone up. It was the hope of accounting for
some of that leftover variability that led us to try a second predictor.

The standard deviation of the residuals is still denoted s (or sometimes to dis-
tinguish it from the standard deviation of y).

The degrees of freedom calculation follows our rule of thumb: the degrees of free-
dom is the number of observations (250) minus one for each coefficient estimated—
for this model, 3.

For each predictor we have a coefficient, its standard error, a t-ratio, and the
corresponding P-value. As with simple regression, the t-ratio measures how many
standard errors the coefficient is away from 0. So, using a Student’s t-model, we
can use its P-value to test the null hypothesis that the true value of the coefficient
is 0.

Using the coefficients from this table, we can write the regression model:

.

As before, we define the residuals as

.

We’ve fit this model with the same least squares principle: The sum of the
squared residuals is as small as possible for any choice of coefficients.

So, What’s New?

So what’s different? With so much of the multiple regression looking just like sim-
ple regression, why devote an entire chapter (or two) to the subject?

There are several answers to this question. First—and most important—the
meaning of the coefficients in the regression model has changed in a subtle but im-
portant way. Because that change is not obvious, multiple regression coefficients

residuals 5 %body fat 2 %body fat
¿

%body fat
¿

5 23.10 1 1.77 waist 2 0.60 height
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A Note on Terminology
When we have two or more
predictors and fit a linear
model by least squares, we
are formally said to fit a least
squares linear multiple re-
gression. Most folks just call it
“multiple regression.” You may
also see the abbreviation OLS
used with this kind of analy-
sis. It stands for “Ordinary
Least Squares.”

Metalware Prices. Multi-
ple regression is a valuable tool for
businesses. Here’s the story of one
company’s analysis of its manufac-
turing process.

Compute a Multiple
Regression. We always find multi-
ple regressions with a computer.
Here’s a chance to try it with the
statistics package you’ve been
using.



are often misinterpreted. We’ll show some examples to help make the meaning
clear.

Second, multiple regression is an extraordinarily versatile calculation, underly-
ing many widely used Statistics methods. A sound understanding of the multiple
regression model will help you to understand these other applications.

Third, multiple regression offers our first glimpse into statistical models that
use more than two quantitative variables. The real world is complex. Simple mod-
els of the kind we’ve seen so far are a great start, but often they’re just not detailed
enough to be useful for understanding, predicting, and decision making. Models
that use several variables can be a big step toward realistic and useful modeling of
complex phenomena and relationships.

What Multiple Regression Coefficients Mean

We said that height might be important in predicting body fat in men. What’s the
relationship between %body fat and height in men? We know how to approach this
question; we follow the three rules. Here’s the scatterplot:

Chapter 29 •  Mult ip le  Regress ion 29-3

40

30

20

10

0

%
 B

od
y 

Fa
t

66 69 72 75
Height (in.)

The scatterplot of %body fat against height seems to say that
there is little relationship between these variables. Figure 29.1

It doesn’t look like height tells us much about %body fat. You just can’t tell much
about a man’s %body fat from his height. Or can you? Remember, in the multiple
regression model, the coefficient of height was , had a t-ratio of , and
had a very small P-value. So it did contribute to the multiple regression model.
How could that be?

The answer is that the multiple regression coefficient of height takes account of
the other predictor, waist size, in the regression model.

To understand the difference, let’s think about all men whose waist size is about
37 inches—right in the middle of our sample. If we think only about these men,
what do we expect the relationship between height and %body fat to be? Now a
negative association makes sense because taller men probably have less body fat
than shorter men who have the same waist size. Let’s look at the plot:

25.4720.60

Reading the Multiple
Regression Table. You may be sur-
prised to find that you already
know how to interpret most of the
values in the table. Here’s a
narrated review.



Here we’ve highlighted the men with waist sizes between 36 and 38 inches.
Overall, there’s little relationship between %body fat and height, as we can see
from the full set of points. But when we focus on particular waist sizes, there is a
relationship between body fat and height. This relationship is conditional because
we’ve restricted our set to only those men within a certain range of waist sizes.
For men with that waist size, an extra inch of height is associated with a decrease
of about 0.60% in body fat. If that relationship is consistent for each waist size,
then the multiple regression coefficient will estimate it. The simple regression co-
efficient simply couldn’t see it.

We’ve picked one particular waist size to highlight. How could we look at the
relationship between %body fat and height conditioned on all waist sizes at the same
time? Once again, residuals come to the rescue.

We plot the residuals of %body fat after a regression on waist size against the
residuals of height after regressing it on waist size. This display is called a partial re-
gression plot. It shows us just what we asked for: the relationship of %body fat to
height after removing the linear effects of waist size.
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When we restrict our attention to men with waist sizes between
36 and 38 inches (points in blue), we can see a relationship be-
tween %body fat and height. Figure 29.2

–7.5

7.5

0.0

%
 B

od
y 

Fa
t R

es
id

ua
ls

–4 0 4
Height Residuals (in.)

A partial regression plot for the coefficient of height in the
regression model has a slope equal to the coefficient value
in the multiple regression model. Figure 29.3

As their name reminds us,
residuals are what’s left over
after we fit a model. That lets
us remove the effects of some
variables. The residuals are
what’s left.



A partial regression plot for a particular predictor has a slope that is the same as
the multiple regression coefficient for that predictor. Here, it’s . It also has the
same residuals as the full multiple regression, so you can spot any outliers or
influential points and tell whether they’ve affected the estimation of this particu-
lar coefficient.

Many modern statistics packages offer partial regression plots as an option for
any coefficient of a multiple regression. For the same reasons that we always look
at a scatterplot before interpreting a simple regression coefficient, it’s a good idea
to make a partial regression plot for any multiple regression coefficient that you
hope to understand or interpret.

The Multiple Regression Model

We can write a multiple regression model like this, numbering the predictors arbi-
trarily (we don’t care which one is ), writing ’s for the model coefficients
(which we will estimate from the data), and including the errors in the model:

e.

Of course, the multiple regression model is not limited to two predictor vari-
ables, and regression model equations are often written to indicate summing any
number (a typical letter to use is k) of predictors. That doesn’t really change any-
thing, so we’ll often stick with the two-predictor version just for simplicity. But
don’t forget that we can have many predictors.

The assumptions and conditions for the multiple regression model sound
nearly the same as for simple regression, but with more variables in the model,
we’ll have to make a few changes.

Assumptions and Conditions

Linearity Assumption
We are fitting a linear model.1 For that to be the right kind of model, we need an
underlying linear relationship. But now we’re thinking about several predictors.
To see whether the assumption is reasonable, we’ll check the Straight Enough
Condition for each of the predictors.

Straight Enough Condition: Scatterplots of y against each of the predictors are
reasonably straight. As we have seen with height in the body fat example, the scat-
terplots need not show a strong (or any!) slope; we just check that there isn’t a
bend or other nonlinearity. For the %body fat data, the scatterplot is beautifully lin-
ear in waist as we saw in Chapter 27. For height, we saw no relationship at all, but
at least there was no bend.

As we did in simple regression, it’s a good idea to check the residuals for linear-
ity after we fit the model. It’s good practice to plot the residuals against the

y 5 b0 1 b1x1 1 b2x2 1

bx1

20.60
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1 By linear we mean that each x appears simply multiplied by its coefficient and added to the model. No
x appears in an exponent or some other more complicated function. That means that as we move
along any x-variable, our prediction for y will change at a constant rate (given by the coefficient) if noth-
ing else changes.

Multiple Regression
Assumptions. The assumptions
and conditions we check for multi-
ple regression are much like those
we checked for simple regression.
Here’s an animated discussion of
the assumptions and conditions for
multiple regression.



predicted values and check for patterns, especially for bends or other nonlineari-
ties. (We’ll watch for other things in this plot as well.)

If we’re willing to assume that the multiple regression model is reasonable, we can
fit the regression model by least squares. But we must check the other assumptions
and conditions before we can interpret the model or test any hypotheses.

Independence Assumption
As with simple regression, the errors in the true underlying regression model
must be independent of each other. As usual, there’s no way to be sure that the In-
dependence Assumption is true. Fortunately, even though there can be many pre-
dictor variables, there is only one response variable and only one set of errors. The
Independence Assumption concerns the errors, so we check the corresponding
conditions on the residuals.

Randomization Condition: The data should arise from a random sample or
randomized experiment. Randomization assures us that the data are representa-
tive of some identifiable population. If you can’t identify the population, you
can’t interpret the regression model or any hypothesis tests because they are
about a regression model for that population. Regression methods are often ap-
plied to data that were not collected with randomization. Regression models fit to
such data may still do a good job of modeling the data at hand, but without some
reason to believe that the data are representative of a particular population, you
should be reluctant to believe that the model generalizes to other situations.

We also check displays of the regression residuals for evidence of patterns,
trends, or clumping, any of which would suggest a failure of independence. In the
special case when one of the x-variables is related to time, be sure that the residu-
als do not have a pattern when plotted against that variable.

The %body fat data were collected on a sample of men. The men were not related
in any way, so we can be pretty sure that their measurements are independent.

Equal Variance Assumption
The variability of the errors should be about the same for all values of each predic-
tor. To see if this is reasonable, we look at scatterplots.

Does the Plot Thicken? Condition: Scatterplots of the regression residuals
against each x or against the predicted values, , offer a visual check. The spread
around the line should be nearly constant. Be alert for a “fan” shape or other ten-
dency for the variability to grow or shrink in one part of the scatterplot.

Here are the residuals plotted against waist and height. Neither plot shows pat-
terns that might indicate a problem.

ŷ
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Residuals plotted against each predictor show no pattern. That’s a good indication that
the Straight Enough Condition and the “Does the Plot Thicken?” Condition are satisfied.
Figure 29.4

Check the Residual Plot
(Part 1)

The residuals should appear
to have no pattern with re-
spect to the predicted values.

Check the Residual Plot
(Part 2)

The residuals should appear
to be randomly scattered and
show no patterns or clumps
when plotted against the pre-
dicted values.

Check the Residual Plot
(Part 3)

The spread of the residuals
should be uniform when plot-
ted against any of the x’s or
against the predicted values.



If residual plots show no pattern, if the data are plausibly independent, and if
the plots don’t thicken, we can feel good about interpreting the regression model.
Before we test hypotheses, however, we must check one final assumption.

Normality Assumption
We assume that the errors around the idealized regression model at any specified
values of the x-variables follow a Normal model. We need this assumption so
that we can use a Student’s t-model for inference. As with other times when
we’ve used Student’s t, we’ll settle for the residuals satisfying the Nearly Normal
Condition.

Nearly Normal Condition: Because we have only one set of residuals, this is
the same set of conditions we had for simple regression. Look at a histogram or
Normal probability plot of the residuals. The histogram of residuals in the %body
fat regression certainly looks nearly Normal, and the Normal probability plot is
fairly straight. And, as we have said before, the Normality Assumption becomes
less important as the sample size grows.

Let’s summarize all the checks of conditions that we’ve made and the order that
we’ve made them:

1. Check the Straight Enough Condition with scatterplots of the y-variable
against each x-variable.

2. If the scatterplots are straight enough (that is, if it looks like the regression
model is plausible), fit a multiple regression model to the data. (Otherwise,
either stop or consider re-expressing an x- or the y-variable.)

3. Find the residuals and predicted values.
4. Make a scatterplot of the residuals against the predicted values.2 This plot

should look patternless. Check in particular for any bend (which would
suggest that the data weren’t all that straight after all) and for any thickening.
If there’s a bend and especially if the plot thickens, consider re-expressing
the y-variable and starting over.

5. Think about how the data were collected. Was suitable randomization used?
Are the data representative of some identifiable population? If the data are
measured over time, check for evidence of patterns that might suggest
they’re not independent by plotting the residuals against time to look for pat-
terns.

6. If the conditions check out this far, feel free to interpret the regression model
and use it for prediction. If you want to investigate a particular coefficient,
make a partial regression plot for that coefficient.

7. If you wish to test hypotheses about the coefficients or about the overall re-
gression, then make a histogram and Normal probability plot of the residuals
to check the Nearly Normal Condition.
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Check a histogram of the residuals.
The distribution of the residuals
should be unimodal and symmet-
ric. Or check a Normal probability
plot to see whether it is straight.

Figure 29.5

2 In Chapter 27 we noted that a scatterplot of residuals against the predicted values looked just like the
plot of residuals against x. But for a multiple regression, there are several x’s. Now the predicted val-
ues, , are a combination of the x’s—in fact, they’re the combination given by the regression equation
we have computed. So they combine the effects of all the x’s in a way that makes sense for our partic-
ular regression model. That makes them a good choice to plot against.

ŷ

Partial Regression Plots
vs. Scatterplots. When should you
use a partial regression plot? And
why? This activity shows you.



Multiple Regression

Let’s try finding and interpreting a multiple regression model for the body fat data.
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I have body measurements on 250 adult males from the
BYU Human Performance Research Center. I want to under-
stand the relationship between % body fat, height, and waist
size.

✔ Straight Enough Condition: There is no obvious bend in
the scatterplots of %body fat against either x-variable.
The scatterplot of residuals against predicted values
below shows no patterns that would suggest
nonlinearity.

✔ Independence Assumption: These data are not col-
lected over time, and there’s no reason to think that the
%body fat of one man influences that of another. I don’t
know whether the men measured were sampled randomly,
but the data are presented as being representative of
the male population of the United States.

✔ Does the Plot Thicken? Condition: The scatterplot of
residuals against predicted values shows no obvious
changes in the spread about the line.

✔ Nearly Normal Condition: A histogram of the residuals
is unimodal and symmetric.
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Plan Name the variables, report
the W’s, and specify the questions
of interest.

Model Check the appropriate
conditions.

Now you can find the regression
and examine the residuals.

Actually, you need the Nearly
Normal Condition only if we want
to do inference.
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The Normal probability plot of the residuals is reasonably
straight:

Under these conditions a full multiple regression analysis is
appropriate.

Here is the computer output for the regression:
Dependent variable is: %BF
R-squared 5 71.3% R-squared (adjusted) 5 71.1%

with degrees of freedom

Sum of Mean
Source Squares DF Square F-ratio P-value

Regression 12216.6 2 6108.28 307 ,0.0001

Residual 4912.26 247 19.8877

Variable Coefficient SE(Coeff) t-ratio P-value

Intercept 23.10088 7.686 20.403 0.6870

Waist 1.77309 0.0716 24.8 ,0.0001

Height 20.60154 0.1099 25.47 ,0.0001

The estimated regression equation is

.

The for the regression is 71.3%. Waist size and height to-
gether account for about 71% of the variation in %body fat
among men. The regression equation indicates that each
inch in waist size is associated with about a 1.77 increase
in %body fat among men who are of a particular height.
Each inch of height is associated with a decrease in %body
fat of about 0.60 among men with a particular waist size.

The standard errors for the slopes of 0.07 (waist) and 0.11
(height) are both small compared with the slopes them-
selves, so it looks like the coefficient estimates are fairly
precise. The residuals have a standard deviation of 4.46%,
which gives an indication of how precisely we can predict
%body fat with this model.

R2

%body fat
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Choose your method.

Mechanics

Conclusion Interpret the regres-
sion in the proper context.



Multiple Regression Inference I: I Thought I Saw an ANOVA Table . . .

There are several hypothesis tests in the multiple regression output, but all of
them talk about the same thing. Each is concerned with whether the underlying
model parameters are actually zero.

The first of these hypotheses is one we skipped over for simple regression (for
reasons that will be clear in a minute). Now that we’ve looked at ANOVA (in
Chapter 28),3 we can recognize the ANOVA table sitting in the middle of the re-
gression output. Where’d that come from?

The answer is that now that we have more than one predictor, there’s an overall
test we should consider before we do more inference on the coefficients. We ask
the global question “Is this multiple regression model any good at all?” That is,
would we do as well using just to model y? What would that mean in terms of
the regression? Well, if all the coefficients (except the intercept) were zero, we’d
have

and we’d just set .
To address the overall question, we’ll test

(That null hypothesis looks very much like the null hypothesis we tested in the
Analysis of Variance in Chapter 28.)

We can test this hypothesis with a statistic that is labeled with the letter F (in
honor of Sir Ronald Fisher, the developer of Analysis of Variance). In our exam-
ple, the F-value is 307 on 2 and 247 degrees of freedom. The alternative hypothesis
is just that the slope coefficients aren’t all equal to zero, and the test is one-sided—
bigger F-values mean smaller P-values. If the null hypothesis were true, the F-
statistic would be near 1. The F-statistic here is quite large, so we can easily reject
the null hypothesis and conclude that the multiple regression model is better than
just using the mean.4

Why didn’t we do this for simple regression? Because the null hypothesis
would have just been that the lone model slope coefficient was zero, and we were
already testing that with the t-statistic for the slope. In fact, the square of that t-
statistic is equal to the F-statistic for the simple regression, so it really was the
identical test.

Multiple Regression Inference II: Testing the Coefficients

Once we check the F-test and reject the null hypothesis—and, if we are being care-
ful, only if we reject that hypothesis—we can move on to checking the test statistics

H0: b1 5 b2 5 c 5 bk 5 0.

b0 5  y

ŷ 5 b0 1 0x1 1 c 1 0xk

y
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3 If you skipped over Chapter 28, you can just take our word for this and read on.
4 There are F tables on the CD, and they work pretty much as you’d expect. Most regression tables in-
clude a P-value for the F-statistic, but there’s almost never a need to perform this particular test in a
multiple regression. Usually we just glance at the F-statistic to see that it’s reasonably far from 1.0, the
value it would have if the true coefficients were really all zero.

Mean Squares and More.
Here’s an animated tour of the rest
of the regression table. The num-
bers work together to help us
understand the analysis.



for the individual coefficients. Those tests look like what we did for the slope of a
simple regression. For each coefficient we test

against the (two-sided) alternative that it isn’t zero. The regression table gives a
standard error for each coefficient and the ratio of the estimated coefficient to its
standard error. If the assumptions and conditions are met (and now we need the
Nearly Normal condition), these ratios follow a Student’s t-distribution.

How many degrees of freedom? We have a rule of thumb and it works here.
The degrees of freedom is the number of data values minus the number of predic-
tors (in this case, counting the intercept term). For our regression on two predic-
tors, that’s . You shouldn’t have to look up the t-values. Almost every regres-
sion report includes the corresponding P-values.

We can build a confidence interval in the usual way, as an estimate 6 a margin
of error. As always, the margin of error is just the product of the standard error
and a critical value. Here the critical value comes from the t-distribution on

degrees of freedom. So a confidence interval for is

The tricky parts of these tests are that the standard errors of the coefficients now
require harder calculations (so we leave it to the technology) and the meaning of a
coefficient, as we have seen, depends on all the other predictors in the multiple re-
gression model.

That last bit is important. If we fail to reject the null hypothesis for a multiple
regression coefficient, it does not mean that the corresponding predictor variable
has no linear relationship to y. It means that the corresponding predictor con-
tributes nothing to modeling y after allowing for all the other predictors.

How’s That, Again?

This last point bears repeating. The multiple regression model looks so simple
and straightforward:

It looks like each tells us the effect of its associated predictor, , on the
response variable, y. But that is not so. This is, without a doubt, the most common
error that people make with multiple regression:

• It is possible for there to be no simple relationship between y and , and yet 
in a multiple regression can be significantly different from 0. We saw this hap-
pen for the coefficient of height in our example.

• It is also possible for there to be a strong two-variable relationship between y
and , and yet in a multiple regression can be almost 0 with a large P-value
so that we must retain the null hypothesis that the true coefficient is zero. If

bjxj

bjxj

xjbj

y 5 b0 1 b1x1 1 c 1 bkxk 1 e.

bj 6 t*n2k21 SEsbjd.

bjn 2 k 2 1

n 2 3

tn2k21 5
bj 2 0
SEsbjd

H0: bj 5 0
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How Regression
Coefficients Change with New
Variables. When the regression
model grows by including a new
prdictor, all the coefficients are
likely to change. That can help us
understand what those coefficients
mean.



we’re trying to model the horsepower of a car, using both its weight and its en-
gine size, it may turn out that the coefficient for engine size is nearly 0. That
doesn’t mean that engine size isn’t important for understanding horsepower. It
simply means that after allowing for the weight of the car, the engine size doesn’t
give much additional information.

• It is even possible for there to be a significant linear relationship between y and
in one direction, and yet can be of the opposite sign and strongly significant

in a multiple regression. More expensive cars tend to be bigger, and since big-
ger cars have worse fuel efficiency, the price of a car has a slightly negative as-
sociation with fuel efficiency. But in a multiple regression of fuel efficiency on
weight and price, the coefficient of price may be positive. If so, it means that
among cars of the same weight, more expensive cars have better fuel efficiency.
The simple regression on price, though, has the opposite direction because,
overall, more expensive cars are bigger. This switch in sign may seem a little
strange at first, but it’s not really a contradiction at all. It’s due to the change in
the meaning of the coefficient of price when it is in a multiple regression rather
than a simple regression.

So we’ll say it once more: The coefficient of in a multiple regression depends
as much on the other predictors as it does on . Remember that when you inter-
pret a multiple regression model.

Another Example: Modeling Infant Mortality

Infant mortality is often used as a general measure of the quality of healthcare for
children and mothers. It is reported as the rate of deaths of newborns per 1000 live
births. Data recorded for each of the 50 states of the United States may allow us to
build regression models to help understand or predict infant mortality. The vari-
ables available for our model are child death rate (deaths per 100,000 children aged
1–14), percent of teens who are high school dropouts (ages 16–19), percent of
low–birth weight babies (lbw), teen birth rate (births per 100,000 females ages 15–17),
and teen deaths by accident, homicide, and suicide (deaths per 100,000 teens ages
15–19).5

All of these variables were displayed and found to have no outliers and nearly
Normal distributions.6 One useful way to check many of our conditions is with a
scatterplot matrix. This is an array of scatterplots set up so that the plots in each
row have the same variable on their y-axis and those in each column have the
same variable on their x-axis. This way every pair of variables is graphed. On the
diagonal, rather than plotting a variable against itself, you’ll usually find either a
Normal probability plot or a histogram of the variable to help us assess the Nearly
Normal Condition.

xj

xj

bjxj
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WHO U.S. states

WHAT Various measures
relating to children and
teens

WHEN 1999

WHY Research and policy

5 The data are available from the Kids Count section of the Annie E. Casey Foundation, and are all for
1999.
6 In the interest of complete honesty, we should point out that the original data include the District of
Columbia, but it proved to be an outlier on several of the variables, so we’ve restricted attention to the
50 states here.

Multiple Regression
Coefficients. You may be thinking
that multiple regression coefficients
must be more consistent than this
discussion suggests. Here’s a
hands-on analysis for you to
investigate.



The individual scatterplots show at a glance that each of the relationships is
straight enough for regression. There are no obvious bends, clumping, or outliers.
And the plots don’t thicken. So it looks like we can examine some multiple regres-
sion models with inference.

Inference for Multiple Regression

Let’s try to model infant mortality with all of the available predictors.
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A scatterplot matrix shows a scat-
terplot of each pair of variables ar-
rayed so that the vertical and hori-
zontal axes are consistent across
rows and down columns. The diag-
onal cells may hold Normal proba-
bility plots (as they do here), his-
tograms, or just the names of the
variables. These are a great way to
check the Straight Enough Condi-
tion and to check for simple out-
liers. Figure 29.6

I wonder whether all or some of these predictors contribute
to a useful model for infant mortality.

First, there is an overall null hypothesis that asks whether
the entire model is better than just modeling y with its
mean:

The model itself contributes nothing useful, and all the
slope coefficients,

b1 5 b2 5 c 5 bk 5 0.

H0:

Plan State what you want to
know.

Hypotheses Specify your
hypotheses.

(Hypotheses on the intercept are
not particularly interesting for
these data.)
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At least one of the is not 0.

If I reject this hypothesis, then I’ll test a null hypothesis for
each of the coefficients of the form:

The j-th variable contributes nothing useful, after allow-
ing for the other predictors in the model: 

The j-th variable makes a useful contribution to the
model: 

✔ Straight Enough Condition: The scatterplot matrix
shows no bends, clumping, or outliers.

✔ Independence Assumption: These data are based on
random samples and can be considered independent.

These conditions allow me to compute the regression model
and find residuals.

✔ Does the Plot Thicken? Condition: The residual plot
shows no obvious trends in the spread:

✔ Nearly Normal Condition: A histogram of the residuals
is unimodal and symmetric.
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bj 2 0.
HA:

bj 5 0.
H0:

bjHA:

Model State the null model.

Check the appropriate assump-
tions and conditions.
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The one possible outlier is South Dakota. I may repeat the
analysis after removing South Dakota to see whether it
changes substantially.

Under these conditions I can continue with a multiple
regression analysis.

Computer output for this regression looks like this:
Dependent variable is: Infant mort
R-squared 5 71.3 % R-squared (adjusted) 68.0 %
s 5 0.7520 with 50 2 6 5 44 degrees of freedom

Sum of Mean
Source Squares DF Square F-ratio
Regression 61.7319 5 12.3464 21.8

Residual 24.8843 44 0.565553

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 1.63168 0.9124 1.79 0.0806

CDR 0.03123 0.0139 2.25 0.0292

HS drop 20.09971 0.0610 21.63 0.1096

Low BW 0.66103 0.1189 5.56 ,0.0001

Teen 

births 0.01357 0.0238 0.57 0.5713

Teen 

deaths 0.00556 0.0113 0.49 0.6245

The F-ratio of 21.8 on 5 and 44 degrees of freedom is cer-
tainly large enough to reject the default null hypothesis
that the regression model is no better than using the
mean infant mortality rate. So I’ll go on to examine the in-
dividual coefficients.

Most of these coefficients have relatively small t-ratios, so
I can’t be sure that their underlying values are not zero.
Two of the coefficients, child death rate (cdr) and low birth
weight (lbw), have P-values less than 5%. So I am confident
that in this model both of these variables are unlikely to
really have zero coefficients.

Overall the R2 indicates that more than 71% of the variabil-
ity in infant mortality can be accounted for with this
regression model.

After allowing for the linear effects of the other variables in
the model, an increase in the child death rate of 1 death
per 100,000 is associated with an increase of 0.03
deaths per 1000 live births in the infant mortality rate.
And an increase of 1% in the percentage of live births that
are low birth weight is associated with an increase of 0.66
deaths per 1000 live births.

Choose your method.

Mechanics

Multiple regressions are always
found from a computer program.

The P-values given in the regres-
sion output table are from the Stu-
dent’s t-distribution on

degrees of freedom.
They are appropriate for two-sided
alternatives.

Consider the hypothesis tests.
Under the assumptions we’re will-
ing to accept, and considering the
conditions we’ve checked, the in-
dividual coefficients follow Stu-
dent’s t-distributions on 44 degrees
of freedom.

Conclusion Interpret your results
in the proper context.

sn 2 6d 5 44
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Comparing Multiple Regression Models

We have more variables available to us than we used when we modeled infant
mortality. Moreover, several of those we tried don’t seem to contribute to the
model. How do we know that some other choice of predictors might not provide
a better model? What exactly would make an alternative model better?

These are not easy questions. There is no simple measure of the success of a
multiple regression model. Many people look at the value, and certainly we are
not likely to be happy with a model that accounts for only a small fraction of the
variability of y. But that’s not enough. You can always drive the up by piling on
more and more predictors, but models with many predictors are hard to under-
stand. Keep in mind that the meaning of a regression coefficient depends on all
the other predictors in the model, so it is best to keep the number of predictors as
small as possible.

Regression models should make sense. Predictors that are easy to understand
are usually better choices than obscure variables. Similarly, if there is a known
mechanism by which a predictor has an effect on the response variable, that pre-
dictor is usually a good choice for the regression model.

How can we know whether we have the best possible model? The simple an-
swer is that we can’t. There’s always the chance that some other predictors might
bring an improvement (in higher or fewer predictors or simpler interpretation).

Adjusted R2

You may have noticed that the full regression tables shown in this chapter include
another statistic we haven’t discussed. It is called adjusted and sometimes ap-
pears in computer output as (adjusted). The adjusted R2 statistic is a rough at-
tempt to adjust for the simple fact that when we add another predictor to a multi-
ple regression, the can’t go down and will most likely get larger. Only if we
were to add a predictor whose coefficient turned out to be exactly zero would the

remain the same. This fact makes it difficult to compare alternative regression
models that have different numbers of predictors.

We can write a formula for using the sums of squares in the ANOVA table
portion of the regression output table:

.

Adjusted simply substitutes the corresponding mean squares for the SS’s:

.

Because the mean squares are sums of squares divided by their degrees of free-
dom, they are adjusted for the number of predictors in the model. As a result, the
adjusted value won’t necessarily increase when a new predictor is added to the
multiple regression model. That’s fine. But adjusted no longer tells the fraction
of variability accounted for by the model and it isn’t even bounded by 0 and
100%, so it can be awkward to interpret.

Comparing alternative regression models is a challenge, especially when they
have different numbers of predictors. The search for a summary statistic to help us

R2
R2

R2
adj 5

MSRegression

MSTotal

R2

R2 5
SSRegression

SSRegression 1 SSResidual
5

SSRegression

SSTotal

R2

R2

R2

R2
R2

R2

R2

R2



choose among models is the subject of much contemporary research in Statistics.
Adjusted is one common—but not necessarily the best—choice often found in
computer regression output tables. Don’t use it as the sole decision criterion when
you compare different regression models.

What Can Go Wrong? Interpreting Coefficients
● Don’t claim to “hold everything else constant” for a single individual.

It’s often meaningless to say that a regression coefficient says what we ex-
pect to happen if all variables but one were held constant for an individual
and the predictor in question changed. While it’s mathematically correct, it
often just doesn’t make any sense. We can’t gain a year of experience or have
another child without getting a year older. Instead, we can think about all
those who fit given criteria on some predictors and ask about the condi-
tional relationship between y and one x for those individuals. The coefficient
20.60 of height for predicting %body fat says that among men of the same
waist size, those who are one inch taller in height tend to be, on average,
0.60% lower in %body fat. The multiple regression coefficient measures that
average conditional relationship.

● Don’t interpret regression causally. Regressions are usually applied to ob-
servational data. Without deliberately assigned treatments, randomization,
and control, we can’t draw conclusions about causes and effects. We can
never be certain that there are no variables lurking in the background, caus-
ing everything we’ve seen. Don’t interpret , the coefficient of in the mul-
tiple regression, by saying, “If we were to change an individual’s by 1 unit
(holding the other x’s constant) it would change his y by units.” We have
no way of knowing what applying a change to an individual would do.

● Be cautious about interpreting a regression model as predictive. Yes,
we do call the x’s predictors, and you can certainly plug in values for each of
the x’s and find a corresponding predicted value, . But the term “prediction”
suggests extrapolation into the future or beyond the data, and we know that
we can get into trouble when we use models to estimate values for x’s not
in the range of the data. Be careful not to extrapolate very far from the span
of your data. In simple regression it was easy to tell when you extrapolated.
With many predictor variables, it’s often harder to know when you are out-
side the bounds of your original data.7 We usually think of fitting models to
the data more as modeling than as prediction, so that’s often a more appro-
priate term.

● Don’t think that the sign of a coefficient is special. Sometimes our pri-
mary interest in a predictor is whether it has a positive or negative associa-
tion with y. As we have seen, though, the sign of the coefficient also depends
on the other predictors in the model. Don’t look at the sign in isolation and
conclude that “the direction of the relationship is positive (or negative).”
Just like the value of the coefficient, the sign is about the relationship after

ŷ

ŷ

b1

x1

x1b1

R2
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7 With several predictors we can wander beyond the data because of the combination of values even
when individual values are not extraordinary. For example, both 28-inch waists and 76-inch heights can
be found in men in the body fat study, but a single individual with both these measurements would not
be at all typical. The model we fit is probably not appropriate for predicting the % body fat for such a tall
and skinny individual.



allowing for the linear effects of the other predictors. The sign of a variable
can change depending on which other predictors are in or out of the model.
For example, in the regression model for infant mortality, the coefficient of
high school dropout rate was negative and its P-value was fairly small, but the
simple association between dropout rate and infant mortality is positive.
(Check the plot matrix.)

● If a coefficient’s t-statistic is not significant, don’t interpret it at all.
You can’t be sure that the value of the corresponding parameter in the un-
derlying regression model isn’t really zero.

What
^
Can Go Wrong? ● Don’t fit a linear regression to data that aren’t straight. This is the most

fundamental regression assumption. If the relationship between the x’s and
y isn’t approximately linear, there’s no sense in fitting a linear model to it.
What we mean by “linear” is a model of the form we have been writing for
the regression. When we have two predictors, this is the equation of a plane,
which is linear in the sense of being flat in all directions. With more predic-
tors, the geometry is harder to visualize, but the simple structure of the
model is consistent; the predicted values change consistently with equal size
changes in any predictor.

Usually we’re satisfied when plots of y against each of the x’s are straight
enough. We’ll also check a scatterplot of the residuals against the predicted
values for signs of nonlinearity.

● Watch out for the plot thickening. The estimate of the error standard devi-
ation shows up in all the inference formulas. If changes with x, these esti-
mates won’t make sense. The most common check is a plot of the residuals
against the predicted values. If plots of residuals against several of the pre-
dictors all show a thickening, and especially if they also show a bend, then
consider re-expressing y. If the scatterplot against only one predictor shows
thickening, consider re-expressing that predictor.

● Make sure the errors are nearly Normal. All of our inferences require
that the true errors be modeled well by a Normal model. Check the his-
togram and Normal probability plot of the residuals to see whether this as-
sumption looks reasonable.

● Watch out for high-influence points and outliers. We always have to be
on the lookout for a few points that have undue influence on our model, and
regression is certainly no exception. Partial regression plots are a good place
to look for influential points and to understand how they affect each of the
coefficients.

se
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We would never consider a regression analysis without first making scatterplots. The aspects of scat-
terplots that we always look for—their direction, shape, and scatter—relate directly to regression.

Regression inference is connected to just about every inference method we have seen for mea-
sured data. The assumption that the spread of data about the line is constant is essentially the same
as the assumption of equal variances required for the pooled-t methods. Our use of all the residuals
together to estimate their standard deviation is a form of pooling.

C O N N E C T I O N S

El se
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What have we learned?

We first met regression in Chapter 8 and its inference in Chapter 27. Now we add more
predictors to our equation.
We’ve learned that there are many similarities between simple and multiple regression:
● We fit the model by least squares.
● The assumptions and conditions are essentially the same. For multiple regression:

1. The relationship of y with each x must be straight (check the scatterplots).
2. The data values must be independent (think about how they were collected).
3. The spread about the line must be the same across the x-axis for each predictor

variable (make a scatterplot or check the plot of residuals against predicted values).
4. The errors must follow a Normal model (check a histogram or Normal probability plot

of the residuals).

● R2 still gives us the fraction of the total variation in y accounted for by the model.
● We perform inference on the coefficients by looking at the t-values, created from the

ratio of the coefficients to their standard errors.

But we’ve also learned that there are some profound differences in interpretation when
adding more predictors:
● The coefficient of each x indicates the average change in y we’d expect to see for a unit

change in that x for particular values of all the other x-variables.
● The coefficient of a predictor variable can change sign when another variable is en-

tered or dropped from the model.
● Finding a suitable model from among the possibly hundreds of potential models is not

straightforward.

Of course, the ANOVA table in the regression output connects to our consideration of ANOVA in
Chapter 28. This, too, is not coincidental. Multiple Regression, ANOVA, pooled t-tests, and inference
for means are all part of a more general statistical model known as the General Linear Model (GLM).

T E R M S
Multiple regression A linear regression with two or more predictors whose coefficients are found to minimize the

sum of the squared residuals is a least squares linear multiple regression. But it is usually just
called a multiple regression. When the distinction is needed, a least squares linear regression
with a single predictor is called a simple regression. The multiple regression model is

e.

Least squares We still fit multiple regression models by choosing the coefficients that make the sum of the
squared residuals as small as possible. This is called the method of least squares.

Partial regression The partial regression plot for a specified coefficient is a display that helps in understanding the
plot meaning of that coefficient in a multiple regression. It has a slope equal to the coefficient value

and shows the influences of each case on that value. A partial regression plot for a specified x
displays the residuals when y is regressed on the other predictors against the residuals when
the specified x is regressed on the other predictors.

y 5 b0 1 b1x1 1 c 1 bkxk 1



Assumptions for ● Linearity. Check that the scatterplots of y against each x are straight enough and that the
inference in scatterplot of residuals against predicted values has no obvious pattern. (If we find the 

regression (and relationships straight enough, we may fit the regression model to find residuals for further 
conditions to check checking.)

for some of them) ● Independent errors. Think about the nature of the data. Check a residual plot. Any evident
pattern in the residuals can call the assumption of independence into question.

● Constant variance. Check that the scatterplots show consistent spread across the ranges of
the x-variables and that the residual plot has constant variance too. A common problem is
increasing spread with increasing predicted values—the plot thickens!

● Normality of the residuals. Check a histogram or a Normal probability plot of the residuals.

ANOVA The Analysis of Variance table that is ordinarily part of the multiple regression results offers an
F-test to test the null hypothesis that the overall regression is no improvement over just model-
ing y with its mean:

If this null hypothesis is not rejected, then you should not proceed to test the individual
coefficients.

t-ratios for the The t-ratios for the coefficients can be used to test the null hypotheses that the true value of 
coefficients each coefficient is zero against the alternative that it is not.

Scatterplot matrix A scatterplot matrix displays scatterplots for all pairs of a collection of variables, arranged so
that all the plots in a row have the same variable displayed on their y-axis and all plots in a col-
umn have the same variable on their x-axis. Usually, the diagonal holds a display of a single
variable such as a histogram or Normal probability plot, and identifies the variable in its row and
column.

Adjusted R2 An adjustment to the statistic that attempts to allow for the number of predictors in the
model. It is sometimes used when comparing regression models with different numbers of
predictors.

S K I L L S When you complete this lesson you should:

• Understand that the “true” regression model is an idealized summary of the data.

• Know how to examine scatterplots of y vs. each x for violations of assumptions that
would make inference for regression unwise or invalid.

• Know how to examine displays of the residuals from a multiple regression to check that
the conditions have been satisfied. In particular, know how to judge linearity and con-
stant variance from a scatterplot of residuals against predicted values. Know how to
judge Normality from a histogram and Normal probability plot.

• Remember to be especially careful to check for failures of the independence assump-
tion when working with data recorded over time. Examine scatterplots of the residuals
against time and look for patterns.

• Be able to use a statistics package to perform the calculations and make the displays
for multiple regression, including a scatterplot matrix of the variables, a scatterplot of
residuals vs. predicted values, and partial regression plots for each coefficient.

• Know how to use the ANOVA F-test to check that the overall regression model is better
than just using the mean of y.

R2

H0 : b1 5 b2 5 c 5 bk 5 0.
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• Know how to test the standard hypotheses that each regression coefficient is really
zero. Be able to state the null and alternative hypotheses. Know where to find the rele-
vant numbers in standard computer regression output.

• Be able to summarize a regression in words. In particular, be able to state the meaning
of the regression coefficients, taking full account of the effects of the other predictors in
the model.

• Be able to interpret the F-statistic for the overall regression.

• Be able to interpret the P-value of the t-statistics for the coefficients to test the standard
null hypotheses.

Chapter 29 •  Mult ip le  Regress ion 29-21

Regression Analysis on the Computer

DATA DESK

• Select Y- and X-variable icons.
• From the Calc menu, choose Regression.
• Data Desk displays the regression table.
• Select plots of residuals from the Regression table’s

HyperView menu.

Comments
You can change the regression by dragging the icon of another
variable over either the Y- or an X-variable name in the table and
dropping it there. You can add a predictor by dragging its icon
into that part of the table. The regression will recompute auto-
matically.

All statistics packages make a table of results for a regression. If you can read a package’s regres-
sion output table for simple regression, then you can read its table for a multiple regression. You’ll
want to look at the ANOVA table, and you’ll see information for each of the coefficients, not just for a
single slope.

Most packages offer to plot residuals against predicted values. Some will also plot residuals against the
x’s. With some packages you must request plots of the residuals when you request the regression. Others
let you find the regression first and then analyze the residuals afterward. Either way, your analysis is not
complete if you don’t check the residuals with a histogram or Normal probability plot and a scatterplot of
the residuals against the x’s or the predicted values.

One good way to check assumptions before embarking on a multiple regression analysis is with a scat-
terplot matrix. This is sometimes abbreviated SPLOM in commands.

Multiple regressions are always found with a computer or programmable calculator. Before computers
were available, a full multiple regression analysis could take months or even years of work.
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JMP

• From the Analyze menu select Fit Model.
• Specify the response, Y. Assign the predictors, X, in the Con-

struct Model Effects dialog box.
• Click on Run Model.

Comments
JMP chooses a regression analysis when the response variable
is “Continuous.” The predictors can be any combination of quanti-
tative or categorical. If you get a different analysis, check the
variable types.

MINITAB

• Choose Regression from the Stat menu.
• Choose Regression. . . from the Regression submenu.
• In the Regression dialog, assign the Y-variable to the Re-

sponse box and assign the X-variables to the Predictors box.
• Click the Graphs button.
• In the Regression-Graphs dialog, select Standardized residu-

als, and check Normal plot of residuals and Residuals ver-
sus fits.

• Click the OK button to return to the Regression dialog.
• To specify displays, click Graphs, and check the displays you

want.
• Click the OK button to return to the Regression dialog.
• Click the OK button to compute the regression.

SPSS

• Choose Regression from the Analyze menu.
• Choose Linear from the Regression submenu.
• When the Linear Regression dialog appears, select the Y-

variable and move it to the dependent target. Then move the X-
variables to the independent target.

• Click the Plots button.
• In the Linear Regression Plots dialog, choose to plot the

*SRESIDs against the *ZPRED values.
• Click the Continue button to return to the Linear Regression

dialog.
• Click the OK button to compute the regression.

EXCEL

• From the Tools menu, select Data Analysis.
• Select Regression from the Analysis Tools list.
• Click the OK button.
• Enter the data range holding the Y-variable in the box labeled

“Y-range.”
• Enter the range of cells holding the X-variables in the box

labeled “X-range.”
• Select the New Worksheet Ply option.
• Select Residuals options. Click the OK button.

Comments
The Y and X ranges do not need to be in the same rows of the
spreadsheet, although they must cover the same number of
cells. But it is a good idea to arrange your data in parallel
columns as in a data table. The X-variables must be in adjacent
columns. No cells in the data range may hold non-numeric
values.
Although the dialog offers a Normal probability plot of the residu-
als, the data analysis add-in does not make a correct probability
plot, so don’t use this option.
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TI-83/84 Plus

Comments
You need a special program to compute a multiple regression on
the TI-83.

TI-89

Under STAT Tests choose B:MultREg Tests
• Specify the number of predictor variables, and which lists con-

tain the response variable and predictor variables.
• Press e to perform the calculations.

Comments
• The first portion of the output gives the F-statistic and its

P-value as well as the values of R 2, AdjR 2, the standard devia-
tion of the residuals (s), and the Durbin-Watson statistic, which
measures correlation among the residuals.

• The rest of the main output gives the components of the F-test,
as well as values of the coefficients, their standard errors, and
associated t-statistics along with P-values.You can use the right
arrow to scroll through these lists (if desired).

• The calculator creates several new lists that can be used for
assessing the model and its conditions: Yhatlist, resid, sresid
(standardized residuals), leverage, and cookd, as well as lists
of the coefficients, standard errors, t’s, and P-values.

E X E R C I S E S

1. Interpretations. A regression performed to predict
selling price of houses found the equation

where price is in dollars, area is in square feet, lotsize is in
square feet, and age is in years. The is 92%. One of the
interpretations below is correct. Which is it? Explain
what’s wrong with the others.
a) Each year a house ages it is worth $6543 less.
b) Every extra square foot of area is associated with an

additional $35.30 in average price, for houses with a
given lotsize and age.

c) Every dollar in price means lotsize increases 0.718
square feet.

d) This model fits 92% of the data points exactly.

2. More interpretations. A household appliance manu-
facturer wants to analyze the relationship between total
sales and the company’s three primary means of adver-
tising (television, magazines, and radio). All values were
in millions of dollars. They found the regression equation

One of the interpretations below is correct. Which is it?
Explain what’s wrong with the others.
a) If they did no advertising, their income would be

$250 million.

5 250 1 6.75 TV 1 3.5 radio 1 2.3 magazines.sales
¿

R2

5 169328 1 35.3 area 1 0.718 lotsize 2 6543 ageprice
¿

b) Every million dollars spent on radio makes sales in-
crease $3.5 million, all other things being equal.

c) Every million dollars spent on magazines increases
TV spending $2.3 million.

d) Sales increase on average about $6.75 million for each
million spent on TV, after allowing for the effects of
the other kinds of advertising.

3. Predicting final exams. How well do exams given
during the semester predict performance on the final?
One class had three tests during the semester. Computer
output of the regression gives

Dependent variable is Final
s 513.46 R-Sq 5 77.7% R-Sq(adj) 5 74.1%

Predictor Coeff SE(Coeff) t P-value
Intercept 26.72 14.00 20.48 0.636
Test1 0.2560 0.2274 1.13 0.274
Test2 0.3912 0.2198 1.78 0.091
Test3 0.9015 0.2086 4.32 ,0.0001

Analysis of Variance

Source DF SS MS F P-value
Regression 3 11961.8 3987.3 22.02 ,0.0001
Error 19 3440.8 181.1
Total 22 15402.6



a) Write the equation of the regression model.
b) How much of the variation in final exam scores is ac-

counted for by the regression model?
c) Explain in context what the coefficient of Test3 scores

means.
d) A student argues that clearly the first exam doesn’t

help to predict final performance. She suggests that
this exam not be given at all. Does Test 1 have no ef-
fect on the final exam score? Can you tell from this
model? (Hint: Do you think test scores are related to
each other?)

4. Scottish hill races. Hill running—races up and down
hills—has a written history in Scotland dating back to
the year 1040. Races are held throughout the year at dif-
ferent locations around Scotland. A recent compilation of
information for 71 races (for which full information was
available and omitting two unusual races) includes the
distance (miles), the climb (ft), and the record time (sec-
onds). A regression to predict the men’s records as of
2000 looks like this:

Dependent variable is: Men’s record
R-squared 5 98.0% R-squared (adjusted) 5 98.0%
s 5 369.7 with 71 2 3 5 68 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio
Regression 458947098 2 229473549 1679
Residual 9293383 68 136667

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 2521.995 78.39 26.66 ,0.0001
Distance 351.879 12.25 28.7 ,0.0001
Climb 0.643396 0.0409 15.7 ,0.0001

a) Write the regression equation. Give a brief report on
what it says about men’s record times in hill races.

b) Interpret the value of in this regression.
c) What does the coefficient of climb mean in this re-

gression?

5. Home prices. Many variables have an impact on deter-
mining the price of a house. A few of these are size of the
house (square feet), lot size, and number of bathrooms.
Information for a random sample of homes for sale in
the Statesboro, GA, area was obtained from the Internet.
Regression output modeling the asking price with square
footage and number of bathrooms gave the following
result:

Dependent Variable is: Price
s 5 67013 R-Sq 5 71.1% R-Sq (adj) 5 64.6%

Predictor Coeff SE(Coeff) T P-value
Intercept 2152037 85619 21.78 0.110
Baths 9530 40826 0.23 0.821
Sq ft 139.87 46.67 3.00 0.015

R2

Analysis of Variance

Source DF SS MS F P-value
Regression 2 99303550067 49651775033 11.06 0.004
Residual 9 40416679100 4490742122
Total 11 1.39720E111

a) Write the regression equation.
b) How much of the variation in home asking prices is

accounted for by the model?
c) Explain in context what the coefficient of square

footage means.
d) The owner of a construction firm, upon seeing this

model, objects because the model says that the num-
ber of bathrooms has no effect on the price of the
home. He says that when he adds another bathroom,
it increases the value. Is it true that the number of
bathrooms is unrelated to house price? (Hint: Do you
think bigger houses have more bathrooms?)

6. More hill races. Here is the regression for the women’s
records for the same Scottish hill races we considered in
Exercise 4:

Dependent variable is: Women’s record
R-squared 5 97.7% R-squared (adjusted) 5 97.6%
s 5 479.5 with 71 2 3 5 68 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio
Regression 658112727 2 329056364 1431
Residual 15634430 68 229918

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 2554.015 101.7 25.45 ,0.0001
Distance 418.632 15.89 26.4 ,0.0001
Climb 0.780568 0.0531 14.7 ,0.0001

a) Compare the regression model for the women’s
records with that found for the men’s records in Ex-
ercise 4.

Here’s a scatterplot of the residuals for this regression:

b) Discuss the residuals and what they say about the
assumptions and conditions for this regression.
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7. Predicting finals II. Here are some diagnostic plots for
the final exam data from Exercise 3. These were gener-
ated by a computer package and may look different from
the plots generated by the packages you use. (In particu-
lar, note that the axes of the Normal probability plot are
swapped relative to the plots we’ve made in the text. We
only care about the pattern of this plot, so it shouldn’t af-
fect your interpretation.) Examine these plots and dis-
cuss whether the assumptions and conditions for the
multiple regression seem reasonable.
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8. Secretary performance. The AFL-CIO has undertaken
a study of 30 secretaries’ yearly salaries (in thousands of
dollars). The organization wants to predict salaries from
several other variables.

The variables considered to be potential predictors of
salary are:
X1 5 months of service
X2 5 years of education
X3 5 score on standardized test
X4 5 words per minute (wpm) typing speed
X5 5 ability to take dictation in words per minute

A multiple regression model with all five variables was
run on a computer package, resulting in the following
output:

Variable Coefficient Std. Error t-value
Constant 9.788 0.377 25.960
X1 0.110 0.019 5.178
X2 0.053 0.038 1.369
X3 0.071 0.064 1.119
X4 0.004 0.307 0.013
X5 0.065 0.038 1.734

s 5 0.430 R2 5 0.863

Assume that the residual plots show no violations of the
conditions for using a linear regression model.
a) What is the regression equation?
b) From this model, what is the predicted salary (in thou-

sands of dollars) of a secretary with 10 years (120
months) of experience, 9th grade education (9 years of
education), a 50 on the standardized test, 60 wpm typ-
ing speed, and the ability to take 30 wpm dictation?

c) Test whether the coefficient for words per minute of
typing speed (X4) is significantly different from zero
at 

d) How might this model be improved?
e) A correlation of age with salary finds , and

the scatterplot shows a moderately strong positive
linear association. However, if X6 5 age is added to
the multiple regression, the estimated coefficient of
age turns out to be Explain some possi-
ble causes for this apparent change of direction in the
relationship between age and salary.

9. Home prices II. Here are some diagnostic plots for the
home prices data from Exercise 5. These were generated
by a computer package and may look different from the
plots generated by the packages you use. (In particular,
note that the axes of the Normal probability plot are
swapped relative to the plots we’ve made in the text. We
only care about the pattern of this plot, so it shouldn’t af-
fect your interpretation.) Examine these plots and dis-
cuss whether the assumptions and conditions for the
multiple regression seem reasonable.

b6 5 20.154.

r 5 0.682

a 5 0.05.
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10. GPA and SATs. A large section of Stat 101 was asked to
fill out a survey on grade point average and SAT scores.
A regression was run to find out how well Math and Ver-
bal SAT scores could predict academic performance as
measured by GPA. The regression was run on a com-
puter package with the following output:

Response: GPA

Coefficient Std Error t-ratio
Constant 0.574968 0.253874 2.26 0.0249
SAT Verbal 0.001394 0.000519 2.69 0.0080
SAT Math 0.001978 0.000526 3.76 0.0002
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a) What is the regression equation?
b) From this model, what is the predicted GPA of a stu-

dent with an SAT Verbal score of 500 and an SAT
Math score of 550?

c) What else would you want to know about this re-
gression before writing a report about the relation-
ship between SAT scores and grade point averages?
Why would these be important to know?

11. Body fat revisited. The data set on body fat contains 15
body measurements on 250 men from 22 to 81 years old.
Is average %body fat related to weight? Here’s a scatterplot:

And here’s the simple regression:

Dependent variable is: Pct BF
R-squared 5 38.1% R-squared (adjusted) 5 37.9%

with degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 214.6931 2.760 25.32 ,0.0001
Weight 0.18937 0.0153 12.4 ,0.0001

a) Is the coefficient of %body fat on weight statistically
distinguishable from 0? (Perform a hypothesis test.)

b) What does the slope coefficient mean in this regres-
sion?

We saw before that the slopes of both waist size and
height are statistically significant when entered into a
multiple regression equation. What happens if we add
weight to that regression? Recall that we’ve already
checked the assumptions and conditions for regression
on waist size and height in the chapter. Here is the output
from a regression on all three variables:

Dependent variable is: Pct BF
R-squared 5 72.5% R-squared (adjusted) 5 72.2%

with degrees of freedom

Sum of Mean
Source Squares df Square F-ratio
Regression 12418.7 3 4139.57 216
Residual 4710.11 246 19.1468

250 2 4 5 246s 5 4.376

250 2 2 5 248s 5 6.538
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Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 11.54 0.0068
Waist 2.31848 0.1820 12.7 ,0.0001
Height 0.1583 0.1567
Weight 0.0310 0.0013

c) Interpret the slope for weight. How can the coefficient
for weight in this model be negative when its coeffi-
cient was positive in the simple regression model?

d) What does the P-value for height mean in this regres-
sion? (Perform the hypothesis test.)

12. Breakfast cereals. We saw in Chapter 8 that the calorie
content of a breakfast cereal is linearly associated with
its sugar content. Is that the whole story? Here’s the out-
put of a regression model that regresses calories for each
serving on its protein(g), fat(g), fiber(g), carbohydrate(g),
and sugars(g) content.

Dependent variable is: calories
R-squared 5 84.5% R-squared (adjusted) 5 83.4%
s 5 7.947 with 77 2 6 5 71 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio
Regression 24367.5 5 4873.50 77.2
Residual 4484.45 71 63.1613

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 20.2454 5.984 3.38 0.0012
Protein 5.69540 1.072 5.32 ,0.0001
Fat 8.35958 1.033 8.09 ,0.0001
Fiber 21.02018 0.4835 22.11 0.0384
Carbo 2.93570 0.2601 11.3 ,0.0001
Sugars 3.31849 0.2501 13.3 ,0.0001

Assuming that the conditions for multiple regression are
met,
a) What is the regression equation?
b) Do you think this model would do a reasonably good

job at predicting calories? Explain.
c) To check the conditions, what plots of the data might

you want to examine?
d) What does the coefficient of fat mean in this model?

13. Body fat again. Chest size might be a good predictor of
body fat. Here’s a scatterplot of %body fat vs. chest size.
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A regression of %body fat on chest size gives the following
equation:

Dependent variable is: Pct BF
R-squared 5 49.1% R-squared (adjusted) 5 48.9%
s 5 5.930 with 250 2 2 5 248 degrees of freedom

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 252.7122 4.654 211.3 ,0.0001
Chest 0.712720 0.0461 15.5 ,0.0001

a) Is the slope of %body fat on chest size statistically dis-
tinguishable from 0? (Perform a hypothesis test.)

b) What does the answer in part a mean about the rela-
tionship between %body fat and chest size?

We saw before that the slopes of both waist size and
height are statistically significant when entered into a
multiple regression equation. What happens if we add
chest size to that regression? Here is the output from a re-
gression on all three variables:

Dependent variable is: Pct BF
R-squared 5 72.2% R-squared (adjusted) 5 71.9%
s 5 4.399 with 250 2 4 5 246 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio P
Regression 12368.9 3 4122.98 213 ,0.0001
Residual 4759.87 246 19.3491

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 2.07220 7.802 0.266 0.7908
Waist 2.19939 0.1675 13.1 ,0.0001
Height 20.561058 0.1094 25.13 ,0.0001
Chest 20.233531 0.0832 22.81 0.0054

c) Interpret the coefficient for chest.
d) Would you consider removing any of the variables

from this regression model? Why or why not?

14. Grades. The table below shows the five scores from an
introductory Statistics course. Find a model for predicting
final exam score by trying all possible models with two
predictor variables. Which model would you choose? Be
sure to check the conditions for multiple regression.
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continued

Midterm Midterm Home
Name Final 1 2 Project work

Timothy F. 117 82 30 10.5 61
Karen E. 183 96 68 11.3 72
Verena Z. 124 57 82 11.3 69
Jonathan A. 177 89 92 10.5 84
Elizabeth L. 169 88 86 10.6 84
Patrick M. 164 93 81 10.0 71
Julia E. 134 90 83 11.3 79
Thomas A. 98 83 21 11.2 51
Marshall K. 136 59 62 9.1 58
Justin E. 183 89 57 10.7 79
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Midterm Midterm Home
Name Final 1 2 Project work

Alexandra E. 171 83 86 11.5 78
Christopher B. 173 95 75 8.0 77
Justin C. 164 81 66 10.7 66
Miguel A. 150 86 63 8.0 74
Brian J. 153 81 86 9.2 76
Gregory J. 149 81 87 9.2 75
Kristina G. 178 98 96 9.3 84
Timothy B. 75 50 27 10.0 20
Jason C. 159 91 83 10.6 71
Whitney E. 157 87 89 10.5 85
Alexis P. 158 90 91 11.3 68
Nicholas T. 171 95 82 10.5 68
Amandeep S. 173 91 37 10.6 54
Irena R. 165 93 81 9.3 82
Yvon T. 168 88 66 10.5 82
Sara M. 186 99 90 7.5 77
Annie P. 157 89 92 10.3 68
Benjamin S. 177 87 62 10.0 72
David W. 170 92 66 11.5 78
Josef H. 78 62 43 9.1 56
Rebecca S. 191 93 87 11.2 80
Joshua D. 169 95 93 9.1 87
Ian M. 170 93 65 9.5 66
Katharine A. 172 92 98 10.0 77
Emily R. 168 91 95 10.7 83
Brian M. 179 92 80 11.5 82
Shad M. 148 61 58 10.5 65
Michael R. 103 55 65 10.3 51
Israel M. 144 76 88 9.2 67
Iris J. 155 63 62 7.5 67
Mark G. 141 89 66 8.0 72
Peter H. 138 91 42 11.5 66
Catherine R.M. 180 90 85 11.2 78
Christina M. 120 75 62 9.1 72
Enrique J. 86 75 46 10.3 72
Sarah K. 151 91 65 9.3 77
Thomas J. 149 84 70 8.0 70
Sonya P. 163 94 92 10.5 81
Michael B. 153 93 78 10.3 72
Wesley M. 172 91 58 10.5 66
Mark R. 165 91 61 10.5 79
Adam J. 155 89 86 9.1 62
Jared A. 181 98 92 11.2 83
Michael T. 172 96 51 9.1 83
Kathryn D. 177 95 95 10.0 87
Nicole M. 189 98 89 7.5 77
Wayne E. 161 89 79 9.5 44
Elizabeth S. 146 93 89 10.7 73
John R. 147 74 64 9.1 72
Valentin A. 160 97 96 9.1 80
David T. O. 159 94 90 10.6 88
Marc I. 101 81 89 9.5 62
Samuel E. 154 94 85 10.5 76
Brooke S. 183 92 90 9.5 86

HS Life
State name Murder grad Income Illiteracy exp

Alabama 15.1 41.3 3624 2.1 69.05
Alaska 11.3 66.7 6315 1.5 69.31
Arizona 7.8 58.1 4530 1.8 70.55
Arkansas 10.1 39.9 3378 1.9 70.66
California 10.3 62.6 5114 1.1 71.71
Colorado 6.8 63.9 4884 0.7 72.06
Connecticut 3.1 56.0 5348 1.1 72.48
Delaware 6.2 54.6 4809 0.9 70.06
Florida 10.7 52.6 4815 1.3 70.66
Georgia 13.9 40.6 4091 2.0 68.54
Hawaii 6.2 61.9 4963 1.9 73.60
Idaho 5.3 59.5 4119 0.6 71.87
Illinois 10.3 52.6 5107 0.9 70.14
Indiana 7.1 52.9 4458 0.7 70.88
Iowa 2.3 59.0 4628 0.5 72.56
Kansas 4.5 59.9 4669 0.6 72.58
Kentucky 10.6 38.5 3712 1.6 70.10
Louisiana 13.2 42.2 3545 2.8 68.76
Maine 2.7 54.7 3694 0.7 70.39
Maryland 8.5 52.3 5299 0.9 70.22
Massachusetts 3.3 58.5 4755 1.1 71.83
Michigan 11.1 52.8 4751 0.9 70.63
Minnesota 2.3 57.6 4675 0.6 72.96
Mississippi 12.5 41.0 3098 2.4 68.09
Missouri 9.3 48.8 4254 0.8 70.69
Montana 5.0 59.2 4347 0.6 70.56
Nebraska 2.9 59.3 4508 0.6 72.60
Nevada 11.5 65.2 5149 0.5 69.03
New Hampshire 3.3 57.6 4281 0.7 71.23
New Jersey 5.2 52.5 5237 1.1 70.93
New Mexico 9.7 55.2 3601 2.2 70.32
New York 10.9 52.7 4903 1.4 70.55
North Carolina 11.1 38.5 3875 1.8 69.21
North Dakota 1.4 50.3 5087 0.8 72.78
Ohio 7.4 53.2 4561 0.8 70.82
Oklahoma 6.4 51.6 3983 1.1 71.42
Oregon 4.2 60.0 4660 0.6 72.13
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15. Fifty states. Here is a data set on various measures of the
50 United States. The murder rate is per 100,000, HS
graduation rate is in %, income is per capita income in dol-
lars, illiteracy rate is per 1000, and life expectancy is in years.
Find a regression model for life expectancy with three pre-
dictor variables by trying all four of the possible models.
a) Which model appears to do the best?
b) Would you leave all three predictors in this model?
c) Does this model mean that by changing the levels of

the predictors in this equation, we could affect life
expectancy in that state? Explain.

d) Be sure to check the conditions for multiple regres-
sion. What do you conclude?
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HS Life
State name Murder grad Income Illiteracy exp

Pennsylvania 6.1 50.2 4449 1.0 70.43
Rhode Island 2.4 46.4 4558 1.3 71.9
South Carolina 11.6 37.8 3635 2.3 67.96
South Dakota 1.7 53.3 4167 0.5 72.08
Tennessee 11.0 41.8 3821 1.7 70.11
Texas 12.2 47.4 4188 2.2 70.90
Utah 4.5 67.3 4022 0.6 72.90
Vermont 5.5 57.1 3907 0.6 71.64
Virginia 9.5 47.8 4701 1.4 70.08
Washington 4.3 63.5 4864 0.6 71.72
West Virginia 6.7 41.6 3617 1.4 69.48
Wisconsin 3.0 54.5 4468 0.7 72.48
Wyoming 6.9 62.9 4566 0.6 70.29

17. Burger King revisited. Recall the Burger King menu
data from Chapter 8. BK’s nutrition sheet lists many
variables. Here’s a multiple regression to predict calories
for Burger King foods from protein content (g), total fat
(g), carbohydrate (g), and sodium (mg) per serving:

Dependent variable is: Calories
R-squared 5 100.0% R-squared (adjusted) 5 100.0%
s 5 3.140 with 31 2 5 5 26 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio
Regression 1419311 4 354828 35994
Residual 256.307 26 9.85796

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 6.53412 2.425 2.69 0.0122
Protein 3.83855 0.0859 44.7 ,0.0001
Total fat 9.14121 0.0779 117 ,0.0001
Carbs 3.94033 0.0336 117 ,0.0001
Na/S 20.69155 0.2970 22.33 0.0279

a) Do you think this model would do a good job of pre-
dicting calories for a new BK menu item? Why or
why not?

b) The mean of calories is 455.5 with a standard deviation
of 217.5. Discuss what the value of s in the regression
means about how well the model fits the data.

c) Does the value of 100.0% mean that the residuals
are all actually equal to zero?

R2
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16. Breakfast cereals again. We saw in Chapter 8 that the
calorie count of a breakfast cereal is linearly associated
with its sugar content. Can we predict the calories of a
serving from its vitamins and mineral content? Here’s a
multiple regression model of calories per serving on its
sodium (mg), potassium (mg), and sugars (g):

Dependent variable is: Calories
R-squared 5 38.9% R-squared (adjusted) 5 36.4%
s 5 15.74 with 75 2 4 5 71 degrees of freedom

Sum of Mean
Source Squares df Square F-ratio P-value
Regression 11211.1 3 3737.05 15.1 ,0.0001
Residual 17583.5 71 247.655

Variable Coefficient SE(Coeff) t-ratio P-value
Intercept 81.9436 5.456 15.0 ,0.0001
Sodium 0.05922 0.0218 2.72 0.0082
Potassium 20.01684 0.0260 20.648 0.5193
Sugars 2.44750 0.4164 5.88 ,0.0001

Assuming that the conditions for multiple regression are
met,
a) What is the regression equation?
b) Do you think this model would do a reasonably good

job at predicting calories? Explain.
c) Would you consider removing any of these predictor

variables from the model? Why or why not?
d) To check the conditions, what plots of the data might

you want to examine?


